
DASH-based Peer-to-Peer Video Streaming in

Cellular Networks

Ala’a Al-Habashna1, Stenio Fernandes2,1, Gabriel Wainer1
1Dept. of Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada

2Center of Informatics, Federal University of Pernambuco, Recife, Brazil

alaaalhabashna@sce.carleton.ca, sflf@cin.ufpe.br, gwainer@sce.carleton.ca

Abstract — Cellular networks now have increased demands

for video streaming applications, which makes it challenging

providing a high Quality of Experience (QoE). We propose im-

proving this QoE by using Device-to-Device (D2D) communica-

tions in Base-Station (BS) assisted Peer-to-Peer (P2P) video

streaming. Our architecture also employs Dynamic Adaptive

Streaming over HTTP (DASH), an adaptive bit rate video

streaming technique. We provide a detailed description of the

proposed architecture. We used the Discrete EVent System Spec-

ification (DEVS) formalism to build a model for the proposed ar-

chitecture in an LTE-A network, and use the model to study the

performance achieved by the proposed architecture in terms of

many video streaming QoE metrics. We also used the model to

simulate a conventional DASH video streaming over a cellular

network. Simulation results show that our architecture achieves

significant improvement in video streaming QoE.

Keywords—DASH; P2P streaming; D2D communication; DEVS

I. INTRODUCTION

The improvements in mobile devices have led to a signifi-
cant growth in video traffic over cellular networks [1]. Now,
cellular networks users tend to watch longer videos with higher
resolution in advanced smartphones. In addition, we now have
many live and on-demand video streaming platforms such as
YouTube and Hulu. As per [1], 75% of the world’s mobile data
traffic will be video by 2020.

This increasing demand for video streaming presents a se-
rious challenge for cellular networks service providers. Provid-
ing a high Quality of Experience (QoE) video streaming over
cellular networks is challenging for many reasons. First, the
scarcity of the radio spectrum in cellular networks makes it
hard to provide the necessary high data rates for users to enjoy
video streaming with high QoE. Furthermore, the variability of
bandwidth of cellular links makes it harder; fluctuations in data
rates could cause frequent video stalling, which degrades the
QoE significantly. As such, we need new techniques to im-
prove video streaming in cellular networks.

In this work, we propose and evaluate a new architecture
that improves the QoE of video streaming in cellular networks.
The proposed architecture employs the following techniques,

• The Cached and Segmented Video Download (CSVD),
an algorithm we proposed in [2]-[3]. This algorithms
focuses on Base-Station (BS) assisted Peer-To-Peer
(P2P) video transmission in cellular networks. CSVD
itself makes use of Device-to-Device (D2D) communi-
cation, as well as video caching in the User Equipment

(UE). Here, CSVD is adapted in the context of video
streaming as opposed to the original video transmission
discussed in [2]-[3]. We evaluate the proposed architec-
ture in terms of video streaming QoE metrics.

• Dynamic Adaptive Streaming over HTTP (DASH); an
adaptive bitrate video streaming technique that provides
advantages to video streaming such as efficient band-
width utilization and improved streaming quality. This
is used to allow support for DASH-based applications.

The proposed architecture is called DABAST: DASH-
based BS-Assisted P2P video STreaming in cellular networks.
This is the first work that investigates P2P video streaming on
cellular networks with DASH. This architecture brings many
benefits to video streaming over cellular networks. We will
provide further description of the DABAST and discuss each
of the techniques above in more detail in Section 3. Further-
more, we use the Discrete EVent System Specification (DEVS)
formalism to build a model for the proposed architecture in an
LTE-A network. Simulations based on this model are used to
evaluate the performance of DABAST in terms of video
streaming QoE metrics. Simulation results show that the pro-
posed architecture achieves significant improvements in terms
of QoE when compared to conventional video streaming over a
cellular network, i.e., DASH streaming without D2D/P2P
streaming. Here we summarize our main contributions:

• A novel architecture, namely DABAST, which im-
proves the QoE of video streaming in cellular networks.

• A DEVS model for DABAST in an LTE-A network

• An implementation of a DEVS model of DABAST us-
ing the CD++ toolkit to study its performance

II. BACKGROUND AND RELATED WORK

In video streaming, a user can start playing a video segment
before the whole video is downloaded. Due to the continuously
increasing popularity of streaming applications and their high
bandwidth requirements, video streaming has received much
interest for over two decades [4]. Initial research on video
streaming focused on developing new streaming protocols for
client-server video streaming on wired networks. As the popu-
larity and number of users of video streaming continued to in-
crease, P2P video streaming became popular. A wide varied re-
search has been conducted in the last decade on the design of
new P2P streaming protocols over wired networks [5].

P2P communication in wireless networks has been studied
in the context of wireless ad hoc networks [6], but it has not
been considered in cellular networks until the recent emer-

gence of D2D communications [7]-[10]. The introduction of
D2D communications in the LTE-A standard has opened the
door for P2P communications between UEs in cellular net-
works [11]. D2D communications provides a direct link be-
tween two UEs without going through the BS or the core net-
work. Using D2D communications in cellular networks pro-
vides good means for improving performance. As such, it has
been investigated in the last few years [7]-[10]. Some of the
work focuses on finding incentive mechanisms to motivate in-
volvement of UEs in D2D communication as the success of
D2D communication depends on the participation of users to
share their content [12]-[13].

To use P2P streaming, users were required to install dedi-
cated applications. Furthermore, streaming traffic could be
blocked by firewalls. These facts motivated the concept of
streaming over the web. HTTP video streaming is the most
popular form of video streaming nowadays due to the conven-
ience of using HTTP [4], which eliminates the need to install
and use a dedicated streaming application and helps to get the
streaming traffic past firewalls. However, it was still challeng-
ing to stream video in wireless and mobile devices due to the
high bandwidth variability of the wireless links. DASH came
as bid to deal with this issue [15], as it allows changing the
quality of video streaming to adapt to network conditions.

Fig. 1. DASH operation

As we can see in Fig. 1, DASH provides two features that
helped improving video streaming. First, it breaks down the
video into small, easy to download segments (for example 5-
seconds chunks). Second, each segment is encoded at multiple
bit rates, providing multiple quality levels for each segment,
which allows adaptive streaming. Clients will choose between
various bit rates to adapt to the network conditions. This helps
improving the bandwidth utilization and reducing the interrup-
tions of the video playback, which results in a higher QoE.

The adaptation strategy is one of the most important parts
of DASH on the client side. It determines how the client selects
the streaming quality to adapt to the varying network condi-
tions. These strategies usually try to balance between two fac-
tors. They try to maximize the video quality by selecting the
highest video rate the network can support, and at the same
time minimize rebuffering.

A. Related work

There has been some work on P2P video streaming in cel-
lular networks. In [16], a system, called MicroCast, was de-
signed and evaluated using a testbed. MicroCast is used by a
group of smart phone users who trust each other, are interested
in watching the same video at the same time, and who are with-
in proximity of each other. Users use their cellular connection
to download segments of the video, and use their WiFi connec-

tions to share among them the downloaded content to improve
the user experience. While this could result in some improve-
ment for a group of users, the scope of the system is limited.
Furthermore, users usually do not use their cellular connection
for downloading video segments when WiFi is available.

A protocol for P2P video streaming on mobile phones,
called RapidStream, was proposed in [17]. It is similar to many
of the P2P streaming protocols on wired networks that involve
the dissemination of buffer maps and video chucks between
peers. While such protocols work well in wired networks, they
involve too much signaling and transmission (dissemination of
buffer maps) to be appropriate for UEs that has limited power,
processing, and transmission resources (especially on a large
scale). In [18], multi-source video streaming was proposed
where mobile users can connect through WiFi direct to other
users to get some of the video content. Such system requires
the device to perform device discovery to find neighbors, and
service discovery to find services offered by neighboring de-
vice. These requirements along with the signaling needed to
exchange content consume a significant amount of resources.

In [19], the authors proposed a D2D communication system
where multiple helpers collaborate to send a video segment to
the requesting UE. The video, which is assumed to be in scala-
ble video coding standard, is encoded by applying multiple de-
scription coding by each helper, and each helper sends a differ-
ent description to the requesting UE. The authors analytically
studied the problem of optimizing the number of transmitted
descriptions to the requesting UE to maximize the video quali-
ty and efficiently consume the helpers' energy. However, the
work only considers the energy consumed by the helpers to
send the segments without considering the processing power
and energy needed to encode the video segments. Encoding the
video segments is a big favor to ask for, considering the limited
energy and processing power of UEs. Furthermore, the optimi-
zation problem assumes that the BS knows the energy level of
helpers and D2D channel characteristics between each pairs.

None of the research studies above on P2P video stream-
ing in cellular networks considers how the video segments are
actually cached. When evaluating the performance, they con-
sider that requested segments are cached. Furthermore, they
consider small-scale networks, i.e., up to 10 UEs including the
helpers. We will show that using clustering and BS assistance,
the potential of collaborative D2D communication between
UEs is significant. In our previous research, we proposed the
CSVD algorithm to improve video transmission [2]-[3].
CSVD is based on the architecture in [20], which employs
video caching and D2D communication. In [2]-[3], CSVD is
deployed in an LTE-A network with large number of UEs to
evaluate how files are cached and exploited later for P2P vid-
eo transmission. Simulation results showed that significant
improvements could be achieved in terms of cell's aggregate
rate and average data rate. Further details will be provided in
the next section; as it is a main component in the DABAST.

Here, we extend CSVD by proposing and evaluating
DABAST; a novel architecture that improves the QoE of video
streaming in cellular networks. DABAST employs BS-assisted
P2P video transmission between UEs (CSVD) and DASH. To
the best of our knowledge, this is the first work that combines
and investigates both P2P video streaming on cellular networks
with DASH. Both DASH and P2P communication between

UEs over D2D are very beneficial for video streaming on cel-
lular networks. Combining both techniques in one system is a
necessary step that brings many benefits and achieves perfor-
mance gains to video streaming on cellular networks. Howev-
er, this system will need much study. Issues to investigate in-
clude finding the best DASH adaptation strategies suiting the
architecture and strategies to select where video segments are sent
from. Such architecture is worth investigating due to the im-
provements it brings to video streaming in cellular networks. We
used the DEVS formalism [21] to build a model for the
DABAST architecture, and used that model to test and evaluate
the performance of the DABAST using simulations.

DEVS provides a formal framework for modeling generic
dynamic systems. It has a hierarchical, modular, and compo-
nent-oriented structure and formal specifications for defining
structure and behavior of a discrete event model. A DEVS
model is composed of structural (Coupled) and behavioral
(Atomic) components, in which the coupled component main-
tains the hierarchical structure of the system, while each atomic
component represents a behavior of a part of the system. The
atomic component uses I/O ports and a finite state timed au-
tomaton representing the behavior of the model. A model is in
state s for a specified time ta(s), after which it produces an out-
put y and changes its state based on the internal transition func-
tion. If it receives an input x before ta(s), it invokes its external
transition function, which can change the model’s state.

The CD++ toolkit [22] was used to implement our model of
DABAST. CD++ is an open-source simulation software writ-
ten in C++ that implements the DEVS abstract simulation
technique. The simulation engine tool of CD++ is built as a
class hierarchy [22]. C++ is used to develop the atomic com-
ponents of the model. These components can be incorporated
into the class hierarchy. Passive classes can be also used to
model components of the system. Coupled models can be cre-
ated using a language built in the simulation engine. Modeling
the DABAST using DEVS will be discussed in Section 4.

III. THE DABAST ARCHITECTURE

The DABAST architecture focuses on providing video
streaming services to the users with better QoE. Fig. 2 shows
the DABAST architecture.

Fig. 2. The DABAST architecture

At the bottom, we have the LTE-A network that involves
the communication between the BS and UEs over cellular
links, and the communication between UEs over D2D links
where the UEs exchange data directly without going through
the BS. A BS-assisted P2P communication protocol is imple-
mented on top of that (here, as an example, we use CSVD,
which uses both cellular and D2D communication). DASH-
based Video streaming takes place on top of these layers, as the
transmission of video segments is implemented as per the
communication protocol at the layer below. The DASH-based
streaming has two parts: a streaming client and a DASH con-
troller where the adaptation algorithm is implemented.

Following, we provide detailed description of the compo-
nents in the top two layers. For further details on modeling the
LTE-A network, the reader is referred to [3].

A. The CSVD algorithm

We used the CSVD algorithm [2]-[3] as the BS-assisted
P2P communication protocol in DABAST. CSVD focuses on
BS-assisted P2P transmission of video files using D2D com-
munications.

In CSVD, the BS divides the coverage area into non-
overlapping subareas, each of which is a cluster. The BS as-
signs UEs to clusters based on their locations, and it selects the
UEs in the central area of each cluster as Storage Members
(SMs) of that cluster. SMs are UEs that are used as helpers in
the cluster. Only the UEs in the middle of each cluster are se-
lected as SMs, in order to prevent inter-cluster interference
when the SMs transmit to other UEs in the same cluster using
D2D links. After clustering, when a UE requests a video file
from the BS, it will process the request and respond as follows:

• Send With Assistance (SWA): if the file (or parts of it)
is available in any of the SMs, the BS will ask the SMs
to send the pieces to the requesting UE over D2D links.

• Send To a SM (STSM): if the requested file is not
available in the distributed cache (or more copies need
to be cached in the cluster) and the requesting UE is a
SM, the BS will send the file to that UE over a cellular
link, and it will ask the UE to cache the file. This case
allows the SMs to cache video files. These files will be
available for UEs in the cluster when requested later.

• Send To a UE (STUE): otherwise, the BS will send the
file directly to the requesting UE over a cellular link.

As simulation results showed in [3], CSVD achieves signif-
icant improvements in terms of both Cell's aggregate data rate
and average data rate.

B. Streaming client

CSVD is used to exploit both cellular links and D2D links

for BS-assisted P2P video streaming between UEs in cellular

networks. Here we provide an overview of the main video

streaming concepts and measured metrics. Video streaming

can be seen as a combination of download and concurrent

playing, i.e., playout starts before the download is complete

[23]. Playout usually starts after receiving a certain "suffi-

cient" number of video segments. The received segments are

buffered in a video/application buffer. The application that

plays the video is usually referred to as the client. The client

receives the pieces from the video buffer and the number of

DABAST

LTE-A Cellular Network

 DASH-based

st ream ing client

Cellular links D2D links

BS-UE comm. P2P com m .

BS-assisted P2P communicat ion

 protocol (example, CSVD)

St ream ing

client

DASH

Controller

pieces available for playout is called the playout buffer length.

Bad network conditions (insufficient bandwidth, delay, etc.)

may cause the playout buffer to get empty as the video bit rate

is higher than the video streaming rate, which causes video

playout interruptions. These interruptions are referred to as

video stalling or rebuffering. When stalling occurs, playout

stops until sufficient data is buffered again.

QoE is used to measure the quality of video streaming; it is

a measure the customer’s streaming experience. There are

many factors that are used to measure the quality of experi-

ence, here we present the most important ones [23].

• Video stalling (rebuffering): the stopping of video play-
back as the playout buffer gets empty. Increasing video
stalling decreases the QoE. Many studies [23] have
showed that video stalling has the biggest impact on
QoE, and thus, should be avoided as much as possible.

• Video continuity index: a measure of the extent by
which rebuffering pauses are avoided [24]. The continu-
ity index is measured as follows,

1 ,rb

c

T

T

= −

 (1)

 where ∆Trb is the total time the client remains paused
 due to rebuffering events and ∆T is the duration of the
 experiment (playing time and rebuffering time).

• Initial (startup) delay: the delay from the request to
stream the video until the playback starts. A certain
number of video segments should be received before
decoding and playback starts.

• Video bit rate: it is a measurement of the amount of da-
ta in one second of the video. Video bit rate is deter-
mined by many quality factors of the video such as vid-
eo frame rate, resolution, and quantization parameters.
As the video bit rate increases, the video quality in-
creases, which increases the QoE.

C. DASH controller

As discussed in Section 2, DASH is an adaptive video
streaming technology employed to help improving the band-
width utilization and reducing the interruptions of the video
playback, which results in a higher QoE.

Much work has been done on the adaptation strategies of
DASH [25]. These can be classified into three categories;
Adaptive Bit Rate selection (ABR) algorithms, buffer-based
algorithms, and hybrid algorithms. In the ABR algorithms, the
video client selects the video bit rate by monitoring network
conditions and estimating the available network capacity. The
problem with these algorithms is that in environments with
highly variable bit rate, accurate estimation of future capacity
could be challenging. Buffer-based algorithms were inspired
by the fact that the occupancy of the playback buffer is the
primary state variable we are trying to manage. Hence, video
bit rate can be selected based only on the length of the playout
buffer. Hybrid approaches try to employ both the estimation of
network capacity and the length of playback buffer.

Here, we propose using the buffer-based approach pro-
posed in [25]. In our architecture, the UE could receive a video
segment from the BS or from any SM in the cluster. As such, it

would be difficult to estimate the bit rate at which the next
segment will be received. The use of hybrid approaches will be
considered in future work. The adaptation algorithm we used is
a piecewise function, f(B), that uses the length of the playout
buffer to determine the video bit rate as shown in Fig. 3.

Fig. 3. Buffer-based adaptation algorithm

At the beginning when the buffer is empty, the video bit
rate will be set to the minimum level, Rmin. When the playout
buffer length reaches a certain value (B1 in Fig.3), the client
will ask for next higher video bit rate (R2 in Fig.3). The algo-
rithm follows a simple rule, stay at rate Ri+1 as long as the
playout buffer length is between Bi and Bi+1. We refer to the
component of the video client that runs the adaptation algo-
rithm as the DASH controller.

D. The DABAST algorithms

When a streaming client starts a video stream, the UE will
send a request to the BS to download video segments. The
communication between the BS and the UEs in terms of signal-
ing and transmission of video segments takes place according
to a BS-assisted P2P communication protocol (here, we use the
CSVD). The BS will send the pieces directly to the requesting
UE over cellular links if the segments are not available in the
distributed cache of the cluster. Otherwise, the BS will ask
SMs to send the segments to the requesting UE. The BS keeps
sending pieces with a certain video bit rate to a UE unless the
UE requests changing the video bit rate. The BS sends a video
segment from the distributed cache (when found) even if the
segment found in the distributed cache does not match the vid-
eo bit rate requested by the UE.

Fig. 4. DABAST operation

The DASH controller in each UE will adjust the video rate
according to the length of the playout buffer. When the video
bit rate needs to be changed, the UE sends a request to the BS
to change it. This reduces the signaling and latency between
the BS and the UE when compared to current implementations
where the UE sends a request for each video segment.

Stream ing

 Client

 DASH

Controller

UE

2-BS-assisted P2P

com m unicat ion to

downlaod video

segm ents

BS

Other

 UEs

1-Video

st ream

request

3-Request

to update

video bit

rate level

4-Request

to update

video bit

rate level

IV. MODELING THE DABAST WITH DEVS

As discussed earlier, we used DEVS to build a model of
DABAST. Fig. 5 shows the coupled DEVS model of the top
level architecture. We can see we have defined a Cell coupled
model that contains a BS, a Transmission Medium, and many
UE coupled models. The Cell coupled model also contains a
Cell Manager atomic model.

Fig. 5. Coupled DEVS model of DABAST

The BS coupled includes four atomic models: BS Queue,
BS Controller, Scheduler, and Transmitter. The messages re-
ceived messages are buffered at the BS Queue. The BS Con-
troller is where the BS part of the CSVD algorithm is imple-
mented [3]. The Scheduler schedules the messages to be
transmitted in the next Transmission Time Interval (TTI),
which is 1 ms. Every TTI, the BS Controller also asks the
Transmitter to send messages that were scheduled for trans-
mission during this TTI.

The UE coupled models contain four atomic models: UE
Queue, UE Controller, Streaming Client, and DASH control-
ler. Messages received are buffered at the UE Queue. The UE
Controller is where the UE part of the CSVD algorithm is im-
plemented.

The DASH-based streaming client is implemented in the
Streaming Client and DASH controller atomic models. The
streaming client manages the video buffer. It adds video seg-
ments received to the video buffer and removes video segments
that were played from the buffer. The video is implemented as
a sliding window. Video segments that were already played
will be removed from the video buffer and the buffer slides to
cover the next segments in the stream. The DASH controller

implements the adaptation algorithm. It monitors the video
playout buffer, and updates the video bit rate accordingly.
When the video bit rate is to be updated, a request is sent to the
BS with the new video bit rate.

The Medium model simulates the transmission medium and
the Cell Manager atomic model initializes and sets the parame-
ters of the cellular DLs and uplinks (ULs) between the BS and
the UEs, as well as the D2D links between the UEs. For further
details on the communication models used for simulation of the
LTE-A cellular links and D2D links, the reader is referred to [3].
In addition to the atomic models above, many other passive clas-
ses where developed to model other components of the system
such as classes to model the cellular and D2D links, download
sessions the BS has with UEs, etc.

We used the CD++ toolkit to implement our model. A sample
code snippet is shown in Fig. 6, which includes parts of the im-
plementation of the BS controller atomic model (class BS).

BS::BS(const string &name) : Atomic(name),

 in(addInputPort("in")), req(addOutputPort("req")),

 sched(addInputPort("sched")),

 schedFinished(addOutputPort("schedFinished")),

 transmit(addInputPort("trans")),

 transFinished(addOutputPort("transFinished")){

 ... }

Model &BS::externalFunction(ExternalMessage &msg){

 receivedMsg = msg.valueO();

 int msgType = receivedMsg->getMsgType();

 const Time msgTime = msg.time();

 if (state == CHECK_QUEUE){

 switch(msgType){

 case MSG_DOWNLOAD:

 dlMsg = (DownloadMsg*)receivedMsg;

 state = RCV_MSG;

 keepHoldInTime = receiveDownloadReq

 (dlMsg, msgTime);

 this->getSessionPtr(receivedMsg->getSrcID())

 ->state = RCV_DOWNLINK_REQ; break;

 ... }

}

Model &BS::internalFunction(InternalMessage &msg){

 switch(state){

 case INITIAL:

 state = CHECK_QUEUE;

 this->bs->holdInActive(Time::Zero); break;

 case CHECK_QUEUE:

 this->bs->passivateBS(); break;

 case RCV_MSG:

 state = CHECK_QUEUE;

 bs->holdInActive(keepHoldInTime); break;

 ...

 }

}

Model &BS::outputFunction(InternalMessage &msg){

 switch(state){

 CHECK_QUEUE: //request the next message

 bs->sendReq(msg.time(), 1, NULL); break;

 RCV_MSG:

 if(receivedMsg != NULL) //delete msg from queue

 bs->sendReq(msg.time(), 2, NULL);

 break;

 ...

 }

}

Fig. 6. Code snippet from BS Controller atomic model in CD++.

Cell Manager
Cell

BS Controller

BS

In

Out

Req

Req

In Out

In

BS Queue

Sched

Sched.

Finished

Trans.

Finished

Trans

Done Start

Scheduler

DoneStart

Transmitter
Out

Receiver

Req

Sender

Medium

Out
Out

ReqIn
In Out In

UE1
In

UE Queue

Req
In Out

UE Controller

OutReqIn

Out2

Streaming

Client

Out1
In

Out2

Out

DASH

Controller

OutIn

DASH

Controller

OutIn

UEn
In

UE Queue

Req
In Out

UE Controller

OutReqIn

Out2

Streaming

Client

Out1
In

Out2

Out

DASH

Controller

OutIn

DASH

Controller

OutIn

The model has five states; Inital, Check_Queue, Rcv_Msg,
Schedule, and Send. At the beginning of each iteration, the
model is in the Initial state as can be seen in the internal func-
tion. Then it goes to the “Check Queue” state, during which,
the BS sends requests (as shown in the output function) to the
queue asking for the messages from UEs. The queue will send
the next message in line. When the model receives a message
(See the external function), it goes to Rcv_Msg state. During
this state, the BS processes the message and then sends anoth-
er request to the Queue. The external function shows, as an
example, the receipt of MSG_DOWNLOAD, which is the mes-
sage sent by a UE to download video segments (See [3]).
When no more messages are available, the queue sends
EMPTY_QUEUE message to the BS controller. When the BS
controller receives EMPTY_QUEUE message, it goes to the
Schedule State. In this state, the BS sends a message to the
Scheduler to schedule the messages to be sent during the next
TTL. When the scheduler finishes scheduling, it sends a
SCHED_FINISHED message to the BS Controller to indicate
that scheduling is finished. When The BS Controller receives
this message, it goes to the Send state. In this state, the model
sends a message to the Transmitter model to start transmis-
sion. When the Transmission is done, the Transmitter model
sends a TRANS_FINISHED message to the BS controller to
indicate that transmission is finished. Upon receipt of this
message, the BS goes back to the Check_Queue state.

V. SIMULATING DABAST

We executed system-level simulations to evaluate the per-
formance of DABAST in terms of the QoE metrics presented
in Section III. Table 1 shows the simulation setup.

TABLE I. SIMULATION SETUP

Parameter Value

Cellular Channel BW (MHz) 10

Cell Range (m) 500

Number of clusters 4

BS antenna gain (dB) 12

BS transmission power (dBm) 43

UE antenna gain (dB) 0

UE transmission power (dBm) 21

Noise spectral density (dBm) -174

Antenna height (m) 15

Transmission model UTRA-FDD

Carrier frequency 900MHz

File requests 20

Area configuration Urban

Number of files 500

D2D Channel BW (MHz) 50

D2D Carrier frequency 24 GHz

D2D transmitter TX Power (dBm) 23

D2D Large-scale fading std deviation (dB) 4.3

D2D Receiver noise figure (dB) 9

D2D TX/RX Height from Ground (m) 1.5

Segment length (second) 10

Number of buffered segments to start playout 4

Video bit rate levels (kbps) 384, 768, 2000, 4000

Videos length (second) 441

We compared the performance of DABAST with a conven-
tional DASH system, i.e., without P2P/D2D communications.
The simulations consider a single LTE-A cell with 500 UEs.

The urban macro propagation model [26] was used for cellular
links with a DL operating carrier frequency of 900 MHz, and a
transmission bandwidth of 10 MHz. A millimeter-wave channel
model at 24 GHz is used for D2D transmission [27].

In each iteration of the simulation, the UEs are randomly
distributed throughout the cell using a uniformly distributed
distance from the BS. Clustering takes place in the beginning
in case of DABAST where the cell is divided into 4 clusters.
The UEs then start requesting video streams. During each itera-
tion of the simulation, each UE will request two video streams.
A UE requests a video stream, and after finishing the playout,
it will request a second video. Before generating each request,
a UE waits for a random period according to a Poisson distri-
bution with mean of 10 seconds. The popularity of videos is
generated according to a Zipf distribution to simulate the vari-
able popularity of the videos, as it has been established this is a
good model for this purpose [28]. Using this distribution, some
videos are requested more often than others. The length of the
videos is 441 seconds, which is the mean length of a YouTube
video [29]. We used a video buffer of 240 seconds, as in [25].
Four video bit rate levels where used as shown in Table 2.
These are adapted from the H.264/AVC video coding standard
[30]. The Zipf exponent is 1.5, and the number of video re-
quests made by each UE in a simulation run is 2.

We measured the number of rebufferings, video continuity
index, initial delay, and video bit rate levels of the received
video segments. Table 2 shows the mean values for these
measurements, along with the Margin of Error (MoE) for a
95% confidence interval. The first three measurements are
based on 30,000 values (30 runs x 500 UEs x 2 requests). For
the video bit rate level, the measurements are based on
1,350,000 values (45 video segments received per request).

TABLE II. SIMULATION RESULTS

 Conventional DASH DABAST

 Mean MoE Mean MoE

Rebufferings 3.4201 0.0083 1.6410 0.0189

Cont. index 0.7323 0.0007 0.8693 0.0015

Initial delay (sec) 56.415 0.2507 24.647 0.2217

Video bitrate (kbps) 396.34 0.1935 442.25 0.4333

As we can see in Table 2, there is a clear improvement

achieved by DABAST over conventional DASH in terms of all
the metrics above. The average number of rebufferings with
DABAST is less than half of that for conventional DASH. As
such, there is a significant increase in the continuity index with
DABAST. The average initial delay with DABAST is also less
than half of that for conventional DASH, which is a significant
improvement. The average initial delay for conventional
DASH is relatively high because in this scenario, there are 500
UEs in the cell requesting video streams, and sharing fixed cel-
lular frequency resources (10 MHz). The average video bit rate
achieved with DABAST is also higher than that of convention-
al DASH. These significant improvements are achieved by
DABAST because video segments are delivered to UEs much
faster than in the case of conventional DASH. Video segments
are delivered faster in the case of DABAST because the CSVD
algorithm is employed, where video segments are sent to many
UEs from both the BS (over cellular links) and SMs (over D2D
links) as opposed to only from the BS. This reduces the initial
delay to receive the first 4 segments needed to start playing,

and consequently, it reduces the initial delay. This also reduces
the events of video buffer stalling, and consequently reduces
the number of rebufferings. There is only a small improvement
achieved by DABAST in terms of average video bitrate. This is
due to two reasons. First, with both conventional DASH and
DABAST, the DASH controller will resort to choosing a lower
video bitrate level to increase the video playout buffer length
and reduce the number of rebufferings. As such, the improve-
ment in the number of rebufferings is usually achieved on the
expense of video bit rate. Second, as mentioned in the Section
III, in this implementation, the BS will send a video segment
from the distributed cache (when found) even if the segment
found in the distributed cache does not match the video bit
rate requested by the UE. This is to increase the utilization of
the available D2D channel, and to speed up the transmission
of video segments as sending from the distributed cache is
faster. As such, sometimes the BS sends video segments with
lower video bit rate than the requested.

Fig. 6 shows an histogram of the number of rebufferings
for both the conventional DASH and DABAST. As we can see,
over 96% of the streaming requests have 3 or 4 rebufferings in
the case of the conventional DASH. With DABAST, on the
other hand, about half of the streaming requests have 0 rebuff-
erings, and slightly less than half of the requests have 3 or 4 re-
bufferings. These streams with 0 rebufferings are streams with
video segments satisfied from both the BS and distributed
cache. This demonstrates the importance of using the CSVD in
DABAST, which improves the transmission of video segments
to the UEs.

Fig. 7. Histogram of the number of rebufferings for conventional DASH

 and DABAST.

Fig. 7 shows a histogram of the continuity index for both
conventional DASH and DABAST. The continuity index re-
sults match these in Fig. 6 for the number of rebufferings.

Half of the requests with DABAST have a continuity index
of 1, which corresponds to zero rebufferings. Less than half of
the video streams have a continuity index less than 0.77 with
DABAST (corresponding to 3 and 4 rebufferings). However, in
the case of conventional DASH, over 96% of the video streams
have a continuity index less than 0.77.

Fig. 8. Histogram of the continuity-index for conventional DASH and DABAST.

Fig. 8 shows the Empirical Cumulative Distribution Func-
tion (ECDF) for the initial delay of both conventional DASH
and DABAST.

Fig. 9. ECDF of the initial delay for conventional DASH and DABAST.

We can see that the ECDF of DABAST is always higher
than that of conventional DASH. For example, the probability
of having a stream with initial delay of 20 seconds or less is
0.56 with DABAST, and only 0.09 with conventional DASH.
Fig. 8 also shows that 50% of the streams have initial delay of
17.08 seconds or less with DABAST while 50% of the streams
have 59.60 seconds or less with conventional DASH. As pre-
viously mentioned, with conventional DASH, all the UEs in
the cell share a fixed frequency resources (10 MHz cellular
channel), while with DABAST, D2D communication exploits
the millimeter wave channel for P2P communication in addi-
tion to cellular resources. The transmission of video segments
from the distributed cache of the cluster speeds up the delivery
of video segments and significantly reduces the initial delay.

TABLE III. COUNT OF THE VIDEO BITRATE LEVELS

 Count

Video bitrate (Kbps) Conventional DASH DABAST

384 1325268 1224024

768 18918 105072

2000 5814 18648

4000 0 2256

Table 3 shows the count for the received video segments
with each video bitrate level, for both conventional DASH and
DABAST. The results show that with DABAST, fewer video
segments with 384 kbps were received and more video seg-

0 1 2 3 4
0

2000

4000

6000

8000

10000

12000

14000

16000

Number of rebufferings

F
re

q
u

e
n

c
y

DASH

DABAST

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

5000

10000

15000

Continuity index

F
re

q
u
e
n
c
y

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

5000

10000

15000

Continuity index

F
re

q
u
e
n
c
y

DABAST

DASH

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Initial delay (sec)

E
C

D
F

DABAST

DASH

ments with higher levels (768, 2000, and 4000 kbps) were re-
ceived. This explains why the average video bitrate (Table 2)
for DABAST is higher than that for conventional DASH.

With DABAST, the video segments are delivered faster to
the requesting UEs as explained above. As such, clients will
have more video segments in the playout buffer, i.e., higher
playout buffer length. Consequently, the requested video bit
rate will be higher in the case of DABAST.

The results presented in this section show that DABAST
provide improvements over conventional DASH in terms of all
measured metrics, which significantly improves the QoE of
video streaming in cellular networks.

VI. CONCLUSION

 The increasing demands for video streaming poses a big
challenge for cellular networks service providers. Providing a
high Quality of Experience (QoE) video streaming over cellu-
lar networks is difficult due to the limited frequency resources
and variable network conditions. As such, new techniques that
help improving the QoE of video streaming in cellular net-
works are needed. In our previous work, we proposed an algo-
rithm for improving video transmission in cellular networks,
namely the Cached and Segmented Video Download (CSVD).
CSVD employs Device-to-Device (D2D) communication for
Base-Station (BS) assisted Peer-to-Peer (P2P) video transmis-
sion in cellular network. Here, we extend our work by develop-
ing a novel architecture for Dynamic Adaptive Streaming over
HTTP (DASH) Based BS-Assisted video STreaming in cellu-
lar networks (DABAST).

DABAST is used to improve the QoE of video streaming in
cellular networks. In the first implementation of DABAST, we
use the CSVD in the context of BS-assisted P2P video stream-
ing. We use the Discrete EVent System Specification (DEVS)
formalism to build a model for the proposed architecture in an
LTE-A network, and use the model to study the performance
achieved by the proposed architecture in terms of many video
streaming QoE metrics. We also use the model to simulate a
conventional DASH-based video streaming over a cellular
network, i.e., without D2D/P2P. Simulation results show that
DABAST achieves significant improvements in terms of many
video streaming QoE metrics. In future work, we will further
investigate the DABAST architecture at a finer level by study-
ing various implementations of the different components. This
will include implementing and evaluating different P2P com-
munication algorithms between the UEs as well as different
DASH controllers.

REFERENCES

[1] Cisco. "Cisco Visual Networking Index: Global Mobile Data Traffic Forecast
Update." Internet: http://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html.
Feb. 2016 [Feb. 28 2016].

[2] A. Al-Habashna, G. Wainer, G. Boudreau, and R. Casselman.
"Improving Wireless Video Transmission in Cellular Networks using
D2D Communication." Canada. Provisional patent P47111. May 2015.

[3] A. Al-Habashna, G. Wainer, G. Boudreau, and R. Casselman, "Cached
and Segmented Video Download for Wireless Video Transmission," in
proc. ANSS, 2016.

[4] B. Li et al., "Two decades of internet video streaming: a retrospective
view, " ACM Trans. Multimedia Comput. Commun. Appl., vol. 9, no. 1,
pp. 1-20, 2013.

[5] I. Ullah et al., "A Survey and Synthesis of User Behavior Measurements
in P2P Streaming Systems," IEEE Communications Surveys & Tutorials,
vol. 14, no. 3, pp. 734-749, 2011.

[6] J Zhao, et al., "Cooperative Caching in Wireless P2P Networks: Design,
Implementation, and Evaluation," IEEE Trans. on parallel and
distributed systems, vol. 21, no. 2, pp.229-241, 2010.

[7] A. Asadi, Q. Wang, and V. Mancuso, “A Survey On Device-To-Device
Communication In Cellular Networks,” IEEE Communications Surveys
and Tutorials, vol. 16, no. 4, pp. 1801 - 1819, 2014.

[8] B. Kaufman and B. Aazhang, “Cellular networks with an overlaid device
to device network,” in Proc. of Asilomar Conference on Signals,
Systems and Computers, 2008, pp. 1537–1541.

[9] K. Doppler et al., “Device-to-device communication as an underlay to
LTE-advanced networks,” IEEE Communications Magazine, vol. 47, no.
12, pp. 42–49, 2009.

[10] K. Doppler et al., “Device-to-device communications: functional
prospects for LTE-Advanced networks,” in Proc. of IEEE ICC
Workshops, 2009, pp. 1–6.

[11] S. Parkvall and D. Astely, “The Evolution of LTE Towards IMT-
Advanced,” Journal of Communications, vol. 4, No. 3, pp. 146-154,
2009.

[12] Y. Zhang, L. Song, W. Saad, Z. Dawy, and Z. Han, "Contract-Based
Incentive Mechanisms for Device-to-Device Communications in
Cellular Networks," IEEE Journal on Selected Areas in
Communications, pp. 1-12, 2015.

[13] L. Gao, J. Huang, Y. Chen, and B. Shou, “Contract-based cooperative
spectrum sharing,” IEEE Transactions on Mobile Computing, vol. 13,
no. 1, pp. 174–187, 2014.

[14] L. Duan, T. Kubo, K. Sugiyama, J. Huang, T. Hasegawa, and J.
Walrand, “Motivating smartphone collaboration in data acquisition and
distributed computing,” IEEE Transactions on Mobile Computing, vol.
13, no. 10, pp. 2320–2333, 2014.

[15] T. Stockhammer "Dynamic adaptive streaming over HTTP: standards
and design principles," in Proc. ACM MMSys'11, 2011, pp. 133-144.

[16] L. Keller et al., "MicroCast: cooperative video streaming on
smartphones," in proc. MobiSys, 2012, pp. 57-70.

[17] P. Eittenberger, M. Herbst, U. Krieger, "RapidStream: P2P Streaming on
Android," in proc. IEEE International Packet Video Workshop, 2012,
pp. 125-130.

[18] V. Siris and D. Dimopoulos, "Multi-Source Mobile Video Streaming
with Proactive Caching and D2D Communication ," in IEEE WoWMoM,
2015, pp. 1-6.

[19] T. Duong et al. "Energy-aware rate and description allocation optimized
video streaming for mobile D2D communications," in Proc. IEEE ICC,
2015, pp. 6791 - 6796.

[20] N. Golrezaei, P. Mansourifard, A. F. Molisch, and A. G. Dimakis,
“Base-Station Assisted Device-To-Device Communications For High-
Throughput Wireless Video Networks,” IEEE Transactions on Wireless
Communications, vol. 13, no. 7, pp. 3665-3676, 2014.

[21] B. Zeigler, H. Praehofer, and T. Kim, Theory of modeling and
simulation. San Diego: Academic Press, 2000.

[22] G. Wainer, Discrete-event modeling and simulation: a practitioner's
approach. Boca Raton: CRC/Taylor & Francis Group, 2009.

[23] M. Seufert et al., "A servey on quality of experience of HTTP adaptive
streaming," IEEE Communications Surveys & Tutorials, vol. 17, no. 1,
pp. 469-492, 2015.

[24] L. Cicco and S. Mascolo, "An Adaptive Video Streaming Control
System: Modeling, Validation, and Performance Evaluation,"
IEEE/ACM Transactions on Networking, vol. 22, no. 2, pp. 526-
539,2014.

[25] T. Huang et al., "A buffer-based approach to rate adaptation: evidence
from a large video streaming service," in Proc. ACM SIGCOM'14, 2014,
pp. 187-198.

[26] 3rd Generation Partnership Project, “Technical Report 36.942, V12.0.0,”
2014.

[27] A. Al-Hourani, S. Chandrasekharan, and S. Kandeepan, “Path loss study
for millimeter wave device-to-device communications in urban
environment,” in Proc. ICC, 2014, pp. 102-107.

[28] M. Cha et al., “I tube, you tube, everybody tubes: analyzing the world’s
largest user generated content video system,” in Proc. ACM SIGCOMM,
2007, pp. 1–14.

[29] S. Ahsan et al., Characterizing Internet Video for Large-scale Active
Measurements, Submitted to the Networking and Internet Architecture,
arXiv preprint arXiv:1408.5777v1, 2014.

[30] “Infrastructure of audiovisual services – Coding of moving video,” ITU-
T, Recommendation H.264, 2012.

