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Abstract — Cellular networks now have increased demands 

for video streaming applications, which makes it challenging 

providing a high Quality of Experience (QoE). We propose im-

proving this QoE by using Device-to-Device (D2D) communica-

tions in Base-Station (BS) assisted Peer-to-Peer (P2P) video 

streaming. Our architecture also employs Dynamic Adaptive 

Streaming over HTTP (DASH), an adaptive bit rate video 

streaming technique. We provide a detailed description of the 

proposed architecture. We used the Discrete EVent System Spec-

ification (DEVS) formalism to build a model for the proposed ar-

chitecture in an LTE-A network, and use the model to study the 

performance achieved by the proposed architecture in terms of 

many video streaming QoE metrics. We also used the model to 

simulate a conventional DASH video streaming over a cellular 

network. Simulation results show that our architecture achieves 

significant improvement in video streaming QoE. 
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I. INTRODUCTION 

The improvements in mobile devices have led to a signifi-
cant growth in video traffic over cellular networks [1]. Now, 
cellular networks users tend to watch longer videos with higher 
resolution in advanced smartphones. In addition, we now have 
many live and on-demand video streaming platforms such as 
YouTube and Hulu. As per [1], 75% of the world’s mobile data 
traffic will be video by 2020. 

This increasing demand for video streaming presents a se-
rious challenge for cellular networks service providers. Provid-
ing a high Quality of Experience (QoE) video streaming over 
cellular networks is challenging for many reasons. First, the 
scarcity of the radio spectrum in cellular networks makes it 
hard to provide the necessary high data rates for users to enjoy 
video streaming with high QoE. Furthermore, the variability of 
bandwidth of cellular links makes it harder; fluctuations in data 
rates could cause frequent video stalling, which degrades the 
QoE significantly. As such, we need new techniques to im-
prove video streaming in cellular networks.  

In this work, we propose and evaluate a new architecture 
that improves the QoE of video streaming in cellular networks. 
The proposed architecture employs the following techniques,  

• The Cached and Segmented Video Download (CSVD), 
an algorithm we proposed in [2]-[3]. This algorithms 
focuses on Base-Station (BS) assisted Peer-To-Peer 
(P2P) video transmission in cellular networks. CSVD 
itself makes use of Device-to-Device (D2D) communi-
cation, as well as video caching in the User Equipment 

(UE). Here, CSVD is adapted in the context of video 
streaming as opposed to the original video transmission 
discussed in [2]-[3]. We evaluate the proposed architec-
ture in terms of video streaming QoE metrics. 

• Dynamic Adaptive Streaming over HTTP (DASH); an 
adaptive bitrate video streaming technique that provides 
advantages to video streaming such as efficient band-
width utilization and improved streaming quality. This 
is used to allow support for DASH-based applications. 

The proposed architecture is called DABAST: DASH-
based BS-Assisted P2P video STreaming in cellular networks. 
This is the first work that investigates P2P video streaming on 
cellular networks with DASH. This architecture brings many 
benefits to video streaming over cellular networks. We will 
provide further description of the DABAST and discuss each 
of the techniques above in more detail in Section 3. Further-
more, we use the Discrete EVent System Specification (DEVS) 
formalism to build a model for the proposed architecture in an 
LTE-A network. Simulations based on this model are used to 
evaluate the performance of DABAST in terms of video 
streaming QoE metrics. Simulation results show that the pro-
posed architecture achieves significant improvements in terms 
of QoE when compared to conventional video streaming over a 
cellular network, i.e., DASH streaming without D2D/P2P 
streaming. Here we summarize our main contributions: 

• A novel architecture, namely DABAST, which im-
proves the QoE of video streaming in cellular networks.  

• A DEVS model for DABAST in an LTE-A network 

• An implementation of a DEVS model of DABAST us-
ing the CD++ toolkit to study its performance 

II. BACKGROUND AND RELATED WORK 

In video streaming, a user can start playing a video segment 
before the whole video is downloaded. Due to the continuously 
increasing popularity of streaming applications and their high 
bandwidth requirements, video streaming has received much 
interest for over two decades [4]. Initial research on video 
streaming focused on developing new streaming protocols for 
client-server video streaming on wired networks. As the popu-
larity and number of users of video streaming continued to in-
crease, P2P video streaming became popular. A wide varied re-
search has been conducted in the last decade on the design of 
new P2P streaming protocols over wired networks [5]. 

P2P communication in wireless networks has been studied 
in the context of wireless ad hoc networks [6], but it has not 
been considered in cellular networks until the recent emer-



gence of D2D communications [7]-[10]. The introduction of 
D2D communications in the LTE-A standard has opened the 
door for P2P communications between UEs in cellular net-
works [11]. D2D communications provides a direct link be-
tween two UEs without going through the BS or the core net-
work. Using D2D communications in cellular networks pro-
vides good means for improving performance. As such, it has 
been investigated in the last few years [7]-[10]. Some of the 
work focuses on finding incentive mechanisms to motivate in-
volvement of UEs in D2D communication as the success of 
D2D communication depends on the participation of users to 
share their content [12]-[13]. 

To use P2P streaming, users were required to install dedi-
cated applications. Furthermore, streaming traffic could be 
blocked by firewalls. These facts motivated the concept of 
streaming over the web. HTTP video streaming is the most 
popular form of video streaming nowadays due to the conven-
ience of using HTTP [4], which eliminates the need to install 
and use a dedicated streaming application and helps to get the 
streaming traffic past firewalls. However, it was still challeng-
ing to stream video in wireless and mobile devices due to the 
high bandwidth variability of the wireless links. DASH came 
as bid to deal with this issue [15], as it allows changing the 
quality of video streaming to adapt to network conditions.    

 
Fig. 1. DASH operation 

As we can see in Fig. 1, DASH provides two features that 
helped improving video streaming. First, it breaks down the 
video into small, easy to download segments (for example 5-
seconds chunks). Second, each segment is encoded at multiple 
bit rates, providing multiple quality levels for each segment, 
which allows adaptive streaming. Clients will choose between 
various bit rates to adapt to the network conditions. This helps 
improving the bandwidth utilization and reducing the interrup-
tions of the video playback, which results in a higher QoE. 

The adaptation strategy is one of the most important parts 
of DASH on the client side. It determines how the client selects 
the streaming quality to adapt to the varying network condi-
tions. These strategies usually try to balance between two fac-
tors. They try to maximize the video quality by selecting the 
highest video rate the network can support, and at the same 
time minimize rebuffering. 

A. Related work 

There has been some work on P2P video streaming in cel-
lular networks. In [16], a system, called MicroCast, was de-
signed and evaluated using a testbed. MicroCast is used by a 
group of smart phone users who trust each other, are interested 
in watching the same video at the same time, and who are with-
in proximity of each other. Users use their cellular connection 
to download segments of the video, and use their WiFi connec-

tions to share among them the downloaded content to improve 
the user experience. While this could result in some improve-
ment for a group of users, the scope of the system is limited. 
Furthermore, users usually do not use their cellular connection 
for downloading video segments when WiFi is available. 

A protocol for P2P video streaming on mobile phones, 
called RapidStream, was proposed in [17]. It is similar to many 
of the P2P streaming protocols on wired networks that involve 
the dissemination of buffer maps and video chucks between 
peers. While such protocols work well in wired networks, they 
involve too much signaling and transmission (dissemination of 
buffer maps) to be appropriate for UEs that has limited power, 
processing, and transmission resources (especially on a large 
scale). In [18], multi-source video streaming was proposed 
where mobile users can connect through WiFi direct to other 
users to get some of the video content. Such system requires 
the device to perform device discovery to find neighbors, and 
service discovery to find services offered by neighboring de-
vice. These requirements along with the signaling needed to 
exchange content consume a significant amount of resources.   

In [19], the authors proposed a D2D communication system 
where multiple helpers collaborate to send a video segment to 
the requesting UE. The video, which is assumed to be in scala-
ble video coding standard, is encoded by applying multiple de-
scription coding by each helper, and each helper sends a differ-
ent description to the requesting UE. The authors analytically 
studied the problem of optimizing the number of transmitted 
descriptions to the requesting UE to maximize the video quali-
ty and efficiently consume the helpers' energy. However, the 
work only considers the energy consumed by the helpers to 
send the segments without considering the processing power 
and energy needed to encode the video segments. Encoding the 
video segments is a big favor to ask for, considering the limited 
energy and processing power of UEs. Furthermore, the optimi-
zation problem assumes that the BS knows the energy level of 
helpers and D2D channel characteristics between each pairs.  

None of the research studies above on P2P video stream-
ing in cellular networks considers how the video segments are 
actually cached. When evaluating the performance, they con-
sider that requested segments are cached. Furthermore, they 
consider small-scale networks, i.e., up to 10 UEs including the 
helpers. We will show that using clustering and BS assistance, 
the potential of collaborative D2D communication between 
UEs is significant. In our previous research, we proposed the 
CSVD algorithm to improve video transmission [2]-[3]. 
CSVD is based on the architecture in [20], which employs 
video caching and D2D communication. In [2]-[3], CSVD is 
deployed in an LTE-A network with large number of UEs to 
evaluate how files are cached and exploited later for P2P vid-
eo transmission. Simulation results showed that significant 
improvements could be achieved in terms of cell's aggregate 
rate and average data rate. Further details will be provided in 
the next section; as it is a main component in the DABAST.  

Here, we extend CSVD by proposing and evaluating 
DABAST; a novel architecture that improves the QoE of video 
streaming in cellular networks. DABAST employs BS-assisted 
P2P video transmission between UEs (CSVD) and DASH. To 
the best of our knowledge, this is the first work that combines 
and investigates both P2P video streaming on cellular networks 
with DASH. Both DASH and P2P communication between 



UEs over D2D are very beneficial for video streaming on cel-
lular networks. Combining both techniques in one system is a 
necessary step that brings many benefits and achieves perfor-
mance gains to video streaming on cellular networks. Howev-
er, this system will need much study. Issues to investigate in-
clude finding the best DASH adaptation strategies suiting the 
architecture and strategies to select where video segments are sent 
from. Such architecture is worth investigating due to the im-
provements it brings to video streaming in cellular networks. We 
used the DEVS formalism [21] to build a model for the 
DABAST architecture, and used that model to test and evaluate 
the performance of the DABAST using simulations.  

DEVS provides a formal framework for modeling generic 
dynamic systems. It has a hierarchical, modular, and compo-
nent-oriented structure and formal specifications for defining 
structure and behavior of a discrete event model. A DEVS 
model is composed of structural (Coupled) and behavioral 
(Atomic) components, in which the coupled component main-
tains the hierarchical structure of the system, while each atomic 
component represents a behavior of a part of the system. The 
atomic component uses I/O ports and a finite state timed au-
tomaton representing the behavior of the model. A model is in 
state s for a specified time ta(s), after which it produces an out-
put y and changes its state based on the internal transition func-
tion. If it receives an input x before ta(s), it invokes its external 
transition function, which can change the model’s state.  

The CD++ toolkit [22] was used to implement our model of 
DABAST. CD++ is an open-source simulation software writ-
ten in C++ that implements the DEVS abstract simulation 
technique. The simulation engine tool of CD++ is built as a 
class hierarchy [22]. C++ is used to develop the atomic com-
ponents of the model. These components can be incorporated 
into the class hierarchy. Passive classes can be also used to 
model components of the system. Coupled models can be cre-
ated using a language built in the simulation engine. Modeling 
the DABAST using DEVS will be discussed in Section 4.  

III. THE DABAST ARCHITECTURE 

The DABAST architecture focuses on providing video 
streaming services to the users with better QoE. Fig. 2 shows 
the DABAST architecture.  

 
Fig. 2. The DABAST architecture 

At the bottom, we have the LTE-A network that involves 
the communication between the BS and UEs over cellular 
links, and the communication between UEs over D2D links 
where the UEs exchange data directly without going through 
the BS. A BS-assisted P2P communication protocol is imple-
mented on top of that (here, as an example, we use CSVD, 
which uses both cellular and D2D communication). DASH-
based Video streaming takes place on top of these layers, as the 
transmission of video segments is implemented as per the 
communication protocol at the layer below. The DASH-based 
streaming has two parts: a streaming client and a DASH con-
troller where the adaptation algorithm is implemented.  

Following, we provide detailed description of the compo-
nents in the top two layers. For further details on modeling the 
LTE-A network, the reader is referred to [3].            

A. The CSVD algorithm 

We used the CSVD algorithm [2]-[3] as the BS-assisted 
P2P communication protocol in DABAST. CSVD focuses on 
BS-assisted P2P transmission of video files using D2D com-
munications.  

In CSVD, the BS divides the coverage area into non-
overlapping subareas, each of which is a cluster. The BS as-
signs UEs to clusters based on their locations, and it selects the 
UEs in the central area of each cluster as Storage Members 
(SMs) of that cluster. SMs are UEs that are used as helpers in 
the cluster. Only the UEs in the middle of each cluster are se-
lected as SMs, in order to prevent inter-cluster interference 
when the SMs transmit to other UEs in the same cluster using 
D2D links. After clustering, when a UE requests a video file 
from the BS, it will process the request and respond as follows:  

• Send With Assistance (SWA): if the file (or parts of it) 
is available in any of the SMs, the BS will ask the SMs 
to send the pieces to the requesting UE over D2D links. 

• Send To a SM (STSM): if the requested file is not 
available in the distributed cache (or more copies need 
to be cached in the cluster) and the requesting UE is a 
SM, the BS will send the file to that UE over a cellular 
link, and it will ask the UE to cache the file. This case 
allows the SMs to cache video files. These files will be 
available for UEs in the cluster when requested later. 

• Send To a UE (STUE): otherwise, the BS will send the 
file directly to the requesting UE over a cellular link. 

As simulation results showed in [3], CSVD achieves signif-
icant improvements in terms of both Cell's aggregate data rate 
and average data rate.  

B. Streaming client  

CSVD is used to exploit both cellular links and D2D links 

for BS-assisted P2P video streaming between UEs in cellular 

networks. Here we provide an overview of the main video 

streaming concepts and measured metrics. Video streaming 

can be seen as a combination of download and concurrent 

playing, i.e., playout starts before the download is complete 

[23]. Playout usually starts after receiving a certain "suffi-

cient" number of video segments. The received segments are 

buffered in a video/application buffer. The application that 

plays the video is usually referred to as the client. The client 

receives the pieces from the video buffer and the number of 
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pieces available for playout is called the playout buffer length. 

Bad network conditions (insufficient bandwidth, delay, etc.) 

may cause the playout buffer to get empty as the video bit rate 

is higher than the video streaming rate, which causes video 

playout interruptions. These interruptions are referred to as 

video stalling or rebuffering. When stalling occurs, playout 

stops until sufficient data is buffered again.   

QoE is used to measure the quality of video streaming; it is 

a measure the customer’s streaming experience. There are 

many factors that are used to measure the quality of experi-

ence, here we present the most important ones [23]. 

• Video stalling (rebuffering): the stopping of video play-
back as the playout buffer gets empty. Increasing video 
stalling decreases the QoE. Many studies [23] have 
showed that video stalling has the biggest impact on 
QoE, and thus, should be avoided as much as possible. 

• Video continuity index: a measure of the extent by 
which rebuffering pauses are avoided [24]. The continu-
ity index is measured as follows, 

1 ,rb

c

T

T



= −


                                                  (1) 

      where ∆Trb is the total time the client remains paused    
      due to rebuffering events and ∆T is the duration of the  
      experiment (playing time and rebuffering time).  

• Initial (startup) delay: the delay from the request to 
stream the video until the playback starts. A certain 
number of video segments should be received before 
decoding and playback starts. 

• Video bit rate: it is a measurement of the amount of da-
ta in one second of the video. Video bit rate is deter-
mined by many quality factors of the video such as vid-
eo frame rate, resolution, and quantization parameters. 
As the video bit rate increases, the video quality in-
creases, which increases the QoE. 

C. DASH controller 

As discussed in Section 2, DASH is an adaptive video 
streaming technology employed to help improving the band-
width utilization and reducing the interruptions of the video 
playback, which results in a higher QoE.     

Much work has been done on the adaptation strategies of 
DASH [25]. These can be classified into three categories; 
Adaptive Bit Rate selection (ABR) algorithms, buffer-based 
algorithms, and hybrid algorithms. In the ABR algorithms, the 
video client selects the video bit rate by monitoring network 
conditions and estimating the available network capacity. The 
problem with these algorithms is that in environments with 
highly variable bit rate, accurate estimation of future capacity 
could be challenging. Buffer-based algorithms were inspired 
by the fact that the occupancy of the playback buffer is the 
primary state variable we are trying to manage. Hence, video 
bit rate can be selected based only on the length of the playout 
buffer. Hybrid approaches try to employ both the estimation of 
network capacity and the length of playback buffer. 

Here, we propose using the buffer-based approach pro-
posed in [25]. In our architecture, the UE could receive a video 
segment from the BS or from any SM in the cluster. As such, it 

would be difficult to estimate the bit rate at which the next 
segment will be received. The use of hybrid approaches will be 
considered in future work. The adaptation algorithm we used is 
a piecewise function, f(B), that uses the length of the playout 
buffer to determine the video bit rate as shown in Fig. 3. 

 

Fig. 3. Buffer-based adaptation algorithm 

At the beginning when the buffer is empty, the video bit 
rate will be set to the minimum level, Rmin. When the playout 
buffer length reaches a certain value (B1 in Fig.3), the client 
will ask for next higher video bit rate (R2 in Fig.3). The algo-
rithm follows a simple rule, stay at rate Ri+1 as long as the 
playout buffer length is between Bi and Bi+1. We refer to the 
component of the video client that runs the adaptation algo-
rithm as the DASH controller.  

D. The DABAST algorithms 

When a streaming client starts a video stream, the UE will 
send a request to the BS to download video segments. The 
communication between the BS and the UEs in terms of signal-
ing and transmission of video segments takes place according 
to a BS-assisted P2P communication protocol (here, we use the 
CSVD). The BS will send the pieces directly to the requesting 
UE over cellular links if the segments are not available in the 
distributed cache of the cluster. Otherwise, the BS will ask 
SMs to send the segments to the requesting UE. The BS keeps 
sending pieces with a certain video bit rate to a UE unless the 
UE requests changing the video bit rate. The BS sends a video 
segment from the distributed cache (when found) even if the 
segment found in the distributed cache does not match the vid-
eo bit rate requested by the UE.  

 

Fig. 4. DABAST operation 

The DASH controller in each UE will adjust the video rate 
according to the length of the playout buffer. When the video 
bit rate needs to be changed, the UE sends a request to the BS 
to change it. This reduces the signaling and latency between 
the BS and the UE when compared to current implementations 
where the UE sends a request for each video segment.  
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IV. MODELING THE DABAST WITH DEVS 

As discussed earlier, we used DEVS to build a model of 
DABAST. Fig. 5 shows the coupled DEVS model of the top 
level architecture. We can see we have defined a Cell coupled 
model that contains a BS, a Transmission Medium, and many 
UE coupled models. The Cell coupled model also contains a 
Cell Manager atomic model. 

 

Fig. 5. Coupled DEVS model of DABAST 

The BS coupled includes four atomic models: BS Queue, 
BS Controller, Scheduler, and Transmitter. The messages re-
ceived messages are buffered at the BS Queue. The BS Con-
troller is where the BS part of the CSVD algorithm is imple-
mented [3]. The Scheduler schedules the messages to be 
transmitted in the next Transmission Time Interval (TTI), 
which is 1 ms. Every TTI, the BS Controller also asks the 
Transmitter to send messages that were scheduled for trans-
mission during this TTI.    

The UE coupled models contain four atomic models: UE 
Queue, UE Controller, Streaming Client, and DASH control-
ler. Messages received are buffered at the UE Queue. The UE 
Controller is where the UE part of the CSVD algorithm is im-
plemented.  

The DASH-based streaming client is implemented in the 
Streaming Client and DASH controller atomic models. The 
streaming client manages the video buffer. It adds video seg-
ments received to the video buffer and removes video segments 
that were played from the buffer. The video is implemented as 
a sliding window. Video segments that were already played 
will be removed from the video buffer and the buffer slides to 
cover the next segments in the stream. The DASH controller 

implements the adaptation algorithm. It monitors the video 
playout buffer, and updates the video bit rate accordingly. 
When the video bit rate is to be updated, a request is sent to the 
BS with the new video bit rate.     

The Medium model simulates the transmission medium and 
the Cell Manager atomic model initializes and sets the parame-
ters of the cellular DLs and uplinks (ULs) between the BS and 
the UEs, as well as the D2D links between the UEs. For further 
details on the communication models used for simulation of the 
LTE-A cellular links and D2D links, the reader is referred to [3]. 
In addition to the atomic models above, many other passive clas-
ses where developed to model other components of the system 
such as classes to model the cellular and D2D links, download 
sessions the BS has with UEs, etc. 

We used the CD++ toolkit to implement our model. A sample 
code snippet is shown in Fig. 6, which includes parts of the im-
plementation of the BS controller atomic model (class BS).  

 
BS::BS(const string &name) : Atomic(name), 

  in(addInputPort("in")), req(addOutputPort("req")), 

  sched(addInputPort( "sched" )), 

  schedFinished(addOutputPort( "schedFinished" )), 

  transmit(addInputPort( "trans" )), 

  transFinished(addOutputPort( "transFinished" )){ 

  ...   } 

 

Model &BS::externalFunction(ExternalMessage &msg){ 

  receivedMsg = msg.valueO(); 

  int msgType = receivedMsg->getMsgType(); 

  const Time msgTime = msg.time(); 

  if (state == CHECK_QUEUE){ 

    switch(msgType){ 

     case MSG_DOWNLOAD: 

      dlMsg = (DownloadMsg*)receivedMsg; 

      state = RCV_MSG; 

      keepHoldInTime = receiveDownloadReq         

                           (dlMsg, msgTime); 

      this->getSessionPtr(receivedMsg->getSrcID()) 

      ->state = RCV_DOWNLINK_REQ; break; 

     ...        } 

} 

  

Model &BS::internalFunction(InternalMessage &msg ){ 

  switch(state){ 

    case INITIAL:   

      state = CHECK_QUEUE; 

      this->bs->holdInActive(Time::Zero); break; 

    case CHECK_QUEUE: 

      this->bs->passivateBS(); break; 

    case RCV_MSG:   

      state = CHECK_QUEUE;    

      bs->holdInActive(keepHoldInTime); break; 

    ... 

   } 

} 

 

Model &BS::outputFunction(InternalMessage &msg){ 

  switch(state){ 

    CHECK_QUEUE:  //request the next message 

      bs->sendReq(msg.time(), 1, NULL); break; 

    RCV_MSG: 

    if(receivedMsg != NULL) //delete msg from queue 

      bs->sendReq(msg.time(), 2, NULL);   

  break; 

  ... 

  } 

}   

Fig. 6. Code snippet from BS Controller atomic model  in CD++. 
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The model has five states; Inital, Check_Queue, Rcv_Msg, 
Schedule, and Send. At the beginning of each iteration, the 
model is in the Initial state as can be seen in the internal func-
tion. Then it goes to the “Check Queue” state, during which, 
the BS sends requests (as shown in the output function) to the 
queue asking for the messages from UEs. The queue will send 
the next message in line. When the model receives a message 
(See the external function), it goes to Rcv_Msg state. During 
this state, the BS processes the message and then sends anoth-
er request to the Queue. The external function shows, as an 
example, the receipt of MSG_DOWNLOAD, which is the mes-
sage sent by a UE to download video segments (See [3]). 
When no more messages are available, the queue sends 
EMPTY_QUEUE message to the BS controller. When the BS 
controller receives EMPTY_QUEUE message, it goes to the 
Schedule State. In this state, the BS sends a message to the 
Scheduler to schedule the messages to be sent during the next 
TTL. When the scheduler finishes scheduling, it sends a 
SCHED_FINISHED message to the BS Controller to indicate 
that scheduling is finished. When The BS Controller receives 
this message, it goes to the Send state. In this state, the model 
sends a message to the Transmitter model to start transmis-
sion. When the Transmission is done, the Transmitter model 
sends a TRANS_FINISHED message to the BS controller to 
indicate that transmission is finished. Upon receipt of this 
message, the BS goes back to the Check_Queue state.       

V. SIMULATING DABAST 

We executed system-level simulations to evaluate the per-
formance of DABAST in terms of the QoE metrics presented 
in Section III. Table 1 shows the simulation setup. 

TABLE I.  SIMULATION SETUP 

Parameter Value 

Cellular Channel BW (MHz) 10 

Cell Range (m) 500 

Number of clusters 4 

BS antenna gain (dB) 12 

BS transmission power (dBm) 43 

UE antenna gain (dB) 0 

UE transmission power (dBm) 21 

Noise spectral density (dBm) -174 

Antenna height (m) 15 

Transmission model UTRA-FDD 

Carrier frequency 900MHz 

File requests 20 

Area configuration Urban 

Number of files 500 

D2D Channel BW (MHz) 50 

D2D Carrier frequency 24 GHz 

D2D transmitter TX Power (dBm) 23 

D2D Large-scale fading std deviation (dB) 4.3 

D2D Receiver noise figure (dB) 9 

D2D TX/RX Height from Ground (m) 1.5 

Segment length (second) 10 

Number of buffered segments to start playout 4 

Video bit rate levels (kbps) 384, 768, 2000, 4000 

Videos length (second) 441 

 

We compared the performance of DABAST with a conven-
tional DASH system, i.e., without P2P/D2D communications. 
The simulations consider a single LTE-A cell with 500 UEs. 

The urban macro propagation model [26] was used for cellular 
links with a DL operating carrier frequency of 900 MHz, and a 
transmission bandwidth of 10 MHz. A millimeter-wave channel 
model at 24 GHz is used for D2D transmission [27]. 

In each iteration of the simulation, the UEs are randomly 
distributed throughout the cell using a uniformly distributed 
distance from the BS. Clustering takes place in the beginning 
in case of DABAST where the cell is divided into 4 clusters. 
The UEs then start requesting video streams. During each itera-
tion of the simulation, each UE will request two video streams. 
A UE requests a video stream, and after finishing the playout, 
it will request a second video. Before generating each request, 
a UE waits for a random period according to a Poisson distri-
bution with mean of 10 seconds. The popularity of videos is 
generated according to a Zipf distribution to simulate the vari-
able popularity of the videos, as it has been established this is a 
good model for this purpose [28]. Using this distribution, some 
videos are requested more often than others. The length of the 
videos is 441 seconds, which is the mean length of a YouTube 
video [29]. We used a video buffer of 240 seconds, as in [25]. 
Four video bit rate levels where used as shown in Table 2. 
These are adapted from the H.264/AVC video coding standard 
[30]. The Zipf exponent is 1.5, and the number of video re-
quests made by each UE in a simulation run is 2.  

We measured the number of rebufferings, video continuity 
index, initial delay, and video bit rate levels of the received 
video segments. Table 2 shows the mean values for these 
measurements, along with the Margin of Error (MoE) for a 
95% confidence interval. The first three measurements are 
based on 30,000 values (30 runs x 500 UEs x 2 requests). For 
the video bit rate level, the measurements are based on 
1,350,000 values (45 video segments received per request). 

TABLE II.  SIMULATION RESULTS 

 Conventional DASH DABAST 

 Mean MoE Mean MoE 

Rebufferings 3.4201 0.0083 1.6410 0.0189 

Cont. index 0.7323 0.0007 0.8693 0.0015 

Initial delay (sec) 56.415 0.2507 24.647 0.2217 

Video bitrate (kbps) 396.34 0.1935 442.25 0.4333 

 
As we can see in Table 2, there is a clear improvement 

achieved by DABAST over conventional DASH in terms of all 
the metrics above. The average number of rebufferings with 
DABAST is less than half of that for conventional DASH. As 
such, there is a significant increase in the continuity index with 
DABAST. The average initial delay with DABAST is also less 
than half of that for conventional DASH, which is a significant 
improvement. The average initial delay for conventional 
DASH is relatively high because in this scenario, there are 500 
UEs in the cell requesting video streams, and sharing fixed cel-
lular frequency resources (10 MHz). The average video bit rate 
achieved with DABAST is also higher than that of convention-
al DASH. These significant improvements are achieved by 
DABAST because video segments are delivered to UEs much 
faster than in the case of conventional DASH. Video segments 
are delivered faster in the case of DABAST because the CSVD 
algorithm is employed, where video segments are sent to many 
UEs from both the BS (over cellular links) and SMs (over D2D 
links) as opposed to only from the BS. This reduces the initial 
delay to receive the first 4 segments needed to start playing, 



and consequently, it reduces the initial delay. This also reduces 
the events of video buffer stalling, and consequently reduces 
the number of rebufferings. There is only a small improvement 
achieved by DABAST in terms of average video bitrate. This is 
due to two reasons. First, with both conventional DASH and 
DABAST, the DASH controller will resort to choosing a lower 
video bitrate level to increase the video playout buffer length 
and reduce the number of rebufferings. As such, the improve-
ment in the number of rebufferings is usually achieved on the 
expense of video bit rate. Second, as mentioned in the Section 
III, in this implementation, the BS will send a video segment 
from the distributed cache (when found) even if the segment 
found in the distributed cache does not match the video bit 
rate requested by the UE.  This is to increase the utilization of 
the available D2D channel, and to speed up the transmission 
of video segments as sending from the distributed cache is 
faster. As such, sometimes the BS sends video segments with 
lower video bit rate than the requested. 

Fig. 6 shows an histogram of the number of rebufferings 
for both the conventional DASH and DABAST. As we can see, 
over 96% of the streaming requests have 3 or 4 rebufferings in 
the case of the conventional DASH. With DABAST, on the 
other hand, about half of the streaming requests have 0 rebuff-
erings, and slightly less than half of the requests have 3 or 4 re-
bufferings. These streams with 0 rebufferings are streams with 
video segments satisfied from both the BS and distributed 
cache. This demonstrates the importance of using the CSVD in 
DABAST, which improves the transmission of video segments 
to the UEs.  

 
Fig. 7. Histogram of the number of rebufferings for conventional DASH 

             and DABAST. 

Fig. 7 shows a histogram of the continuity index for both 
conventional DASH and DABAST. The continuity index re-
sults match these in Fig. 6 for the number of rebufferings.  

Half of the requests with DABAST have a continuity index 
of 1, which corresponds to zero rebufferings. Less than half of 
the video streams have a continuity index less than 0.77 with 
DABAST (corresponding to 3 and 4 rebufferings). However, in 
the case of conventional DASH, over 96% of the video streams 
have a continuity index less than 0.77.   

 

 
Fig. 8. Histogram of the continuity-index for conventional DASH and DABAST. 

Fig. 8 shows the Empirical Cumulative Distribution Func-
tion (ECDF) for the initial delay of both conventional DASH 
and DABAST.  

 
Fig. 9. ECDF of the initial delay for conventional DASH and DABAST. 

We can see that the ECDF of DABAST is always higher 
than that of conventional DASH. For example, the probability 
of having a stream with initial delay of 20 seconds or less is 
0.56 with DABAST, and only 0.09 with conventional DASH. 
Fig. 8 also shows that 50% of the streams have initial delay of 
17.08 seconds or less with DABAST while 50% of the streams 
have 59.60 seconds or less with conventional DASH. As pre-
viously mentioned, with conventional DASH, all the UEs in 
the cell share a fixed frequency resources (10 MHz cellular 
channel), while with DABAST, D2D communication exploits 
the millimeter wave channel for P2P communication in addi-
tion to cellular resources. The transmission of video segments 
from the distributed cache of the cluster speeds up the delivery 
of video segments and significantly reduces the initial delay. 

TABLE III.  COUNT OF THE VIDEO BITRATE LEVELS 

 Count 

Video bitrate (Kbps) Conventional DASH DABAST 

384 1325268 1224024 

768 18918 105072 

2000 5814 18648 

4000 0 2256 

 

Table 3 shows the count for the received video segments 
with each video bitrate level, for both conventional DASH and 
DABAST. The results show that with DABAST, fewer video 
segments with 384 kbps were received and more video seg-
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ments with higher levels (768, 2000, and 4000 kbps) were re-
ceived. This explains why the average video bitrate (Table 2) 
for DABAST is higher than that for conventional DASH.    

With DABAST, the video segments are delivered faster to 
the requesting UEs as explained above. As such, clients will 
have more video segments in the playout buffer, i.e., higher 
playout buffer length. Consequently, the requested video bit 
rate will be higher in the case of DABAST.  

The results presented in this section show that DABAST 
provide improvements over conventional DASH in terms of all 
measured metrics, which significantly improves the QoE of 
video streaming in cellular networks.    

VI. CONCLUSION 

 The increasing demands for video streaming poses a big 
challenge for cellular networks service providers. Providing a 
high Quality of Experience (QoE) video streaming over cellu-
lar networks is difficult due to the limited frequency resources 
and variable network conditions. As such, new techniques that 
help improving the QoE of video streaming in cellular net-
works are needed. In our previous work, we proposed an algo-
rithm for improving video transmission in cellular networks, 
namely the Cached and Segmented Video Download (CSVD). 
CSVD employs Device-to-Device (D2D) communication for 
Base-Station (BS) assisted Peer-to-Peer (P2P) video transmis-
sion in cellular network. Here, we extend our work by develop-
ing a novel architecture for Dynamic Adaptive Streaming over 
HTTP (DASH) Based BS-Assisted video STreaming in cellu-
lar networks (DABAST).  

DABAST is used to improve the QoE of video streaming in 
cellular networks. In the first implementation of DABAST, we 
use the CSVD in the context of BS-assisted P2P video stream-
ing. We use the Discrete EVent System Specification (DEVS) 
formalism to build a model for the proposed architecture in an 
LTE-A network, and use the model to study the performance 
achieved by the proposed architecture in terms of many video 
streaming QoE metrics. We also use the model to simulate a 
conventional DASH-based video streaming over a cellular 
network, i.e., without D2D/P2P. Simulation results show that 
DABAST achieves significant improvements in terms of many 
video streaming QoE metrics. In future work, we will further 
investigate the DABAST architecture at a finer level by study-
ing various implementations of the different components. This 
will include implementing and evaluating different P2P com-
munication algorithms between the UEs as well as different 
DASH controllers.  
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